A ug 2 00 9 Adams inequalities on measure spaces

نویسندگان

  • Luigi Fontana
  • Carlo Morpurgo
چکیده

In 1988 Adams obtained sharp Moser-Trudinger inequalities on bounded domains of Rn. The main step was a sharp exponential integral inequality for convolutions with the Riesz potential. In this paper we extend and improve Adams’ results to functions defined on arbitrary measure spaces with finite measure. The Riesz fractional integral is replaced by general integral operators, whose kernels satisfy suitable and explicit growth conditions, given in terms of their distribution functions; natural conditions for sharpness are also given. Most of the known results about Moser-Trudinger inequalities can be easily adapted to our unified scheme. We give some new applications of our theorems, including: sharp higher order Moser-Trudinger trace inequalities, sharp Adams/Moser-Trudinger inequalities for general elliptic differential operators (scalar and vector-valued), for sums of weighted potentials, and for operators in the CR setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 9 Ju n 20 09 Adams inequalities on measure spaces

In 1988 Adams obtained sharp Moser-Trudinger inequalities on bounded domains of Rn. The main step was a sharp exponential integral inequality for convolutions with the Riesz potential. In this paper we extend and improve Adams’ results to functions defined on arbitrary measure spaces with finite measure. The Riesz fractional integral is replaced by general integral operators, whose kernels sati...

متن کامل

ar X iv : m at h / 03 08 27 0 v 1 [ m at h . FA ] 2 8 A ug 2 00 3 SOME BOAS - BELLMAN TYPE INEQUALITIES IN 2 - INNER PRODUCT SPACES

Some inequalities in 2-inner product spaces generalizing Bessel's result that are similar to the Boas-Bellman inequality from inner product spaces, are given. Applications for determinantal integral inequalities are also provided.

متن کامل

Sharp Singular Adams Inequalities in High Order Sobolev Spaces

In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...

متن کامل

A ug 2 00 9 Heat Kernel Inequalities for Curvature and Second Fundamental Form ∗

Let L = ∆ + Z for a C2 vector field Z on a compact Riemannian manifold M possibly with a boundary ∂M . Let Pt be the (Neumann) diffusion semigroup generated by L, and let pt(x, y) be the corresponding heat kernel w.r.t. a volume type measure μ. We prove that Ric −∇Z ≥ K and ∂M is either convex or empty if and only if the entropy inequality

متن کامل

ar X iv : 0 90 3 . 06 51 v 3 [ m at h . C V ] 1 8 A ug 2 00 9 Toeplitz operators on generalized Bergman spaces

We consider the weighted Bergman spaces HL(B, μλ), where we set dμλ(z) = cλ(1−|z| 2) dτ (z), with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009